Gaming the Video Against Yourself

Motivation Real-world decision-making is inherently complex and partially observable, requiring
agents to interpret high-dimensional sensory input and take reward-maximizing actions with incom-
plete information. This challenge is mirrored in adversarial video game settings, where agents must
infer game state from raw visual input and react to dynamic, opposing players. The goal of this work
is to explore whether an autonomous agent can learn spatially and temporally aware behaviors from
raw pixel-input in a two-player toy game.

Method To address the challenges of learning in a visually complex, partially observable, multi-
agent setting, this work combines convolutional neural networks (CNNs), long short-term memory
networks (LSTMs), and the Soft Actor-Critic (SAC) algorithm, as well as periodic updates to the
enemy policy for self-play. The agent processes sequences of raw RGB frames to form latent feature
representations. These are used by an actor to select actions and by a critics to estimate expected
returns. The policy is trained using self-play and a replay replay buffer, with entropy regularization to
limit excessive exploration.

Implementation A custom two-player game was built using pygame. The game contained resource
bars, ability cooldowns, and a blank playing space. The agent receives sequences of visual input at a
resolution of 200x150 pixels. Three separate CNN-LSTM pipelines output features to the actor and
critic networks. The actor returns a discrete action type and continuous-valued position, while the
critic predicts a scalar eestimated return value for each transition. The action space was gradually
simplified during training to reduce instability, eventually constraining one agent to one action while
the enemy remained passive. Full stamina regeneration was also introduced to prevent resource
constraints from dominating the learning process.

Results The trained agent consistently outperformed a random baseline, achieving average rewards
of 295 to the random baseline’s 44. Additionally, the trained agent had a quicker time-to-kill, though
the random policy was unable to kill within the maximum episode length. Despite significant actor
and critic losses, the agent learned an effective policy. Visualizations showed the trained policy firing
many projectiles towards the enemy. Loss plots revealed growing critic loss and decreasing actor
loss, indicating difficulty in value estimation and policy optimization, likely due to instability from
the intertwined learning objectives.

Discussion The unexpected success of the agent despite poor losses suggests that the simplicity
of the environment may have allowed for high returns through suboptimal strategies. The simple
environment might have also made it easier for the agent to stumble into a reward-maximizing policy
by accident. Curriculum learning approaches, such as progressively expanding the action space or
increasing opponent complexity, could encourage more generalizable behavior.

Conclusion This work shows that even with limited supervision and raw visual input, agents can
learn realistic behaviors using CNN-LSTM models and Actor-Critic methods in a self-play setting.
Although training was unstable and required environment simplification, the agent achieved strong
performance. Future improvements could target reward shaping, curriculum design, and alternative
baselines to better align learned behavior with desired outcomes and to appropriately evaluate the
strength of a policy.

Gaming the Video Against Yourself

Joshua Boisvert
Department of Aeronautics and Astronautics
Stanford University
joshmboi@stanford.edu

Abstract

This paper investigates the integration of computer vision, deep reinforcement
learning, and self-play for training an autonomous agent to play a custom two-
player game inspired by League of Legends and Dota 2. The environment, built in
pygame, features discrete abilities, resource management, and spatial positioning.
To process visual input and capture temporal dependencies, the agent employs a
convolutional neural network (CNN) combined with a long short-term memory
(LSTM) module. Policy learning is conducted using a Soft Actor-Critic (SAC)
framework enhanced with continuous action embeddings and entropy regulariza-
tion, leveraging a replay buffer and self-play dynamics. Experimental results show
that, although the agent reliably exploits the environment to maximize rewards, the
actor and critic fail to model the environment dynamics accurately. These findings
underscore the challenges of learning in partially observable, multi-agent settings
and point to potential improvements through curriculum learning and architectural
refinement.

1 Introduction

The real world presents a dynamic and complex environment, governed by physical laws that are often
only approximated through simplified theorems and models. Despite these abstractions, extracting
meaningful information from sensory inputs remains an inherently difficult task. For artificial agents
to operate effectively in such settings, they must first perceive and interpret their surroundings and
then translate those perceptions into purposeful actions.

Mapping raw sensory data to a meaningful internal representation or "state" is nontrivial, particularly
in high-dimensional, partially observable environments. Moreover, to handle diverse tasks, agents
must generalize across broader feature spaces rather than rely on hand-crafted, task-specific inputs.
This requires that the agent learn to focus on relevant features through experience, rather than
human-defined heuristics.

Action selection is similarly challenging. Feedback is often sparse, delayed, or ambiguous, and the
definition of "success" can be fluid or context-dependent. For example, while one could heuristically
reward a walking agent based on time spent airborne, this fails to capture the nuanced coordination of
leg movement, potentially encouraging an agent to stand still. Furthermore, such feedback must be
derived from raw input and without relying on pre-processed signals. In reinforcement learning, this
complexity is distilled into the design of reward functions, but imperfect or sparse rewards make it
difficult for agents to learn effective behaviors. Mapping high-dimensional sensory observations to
coherent, goal-directed actions remains a fundamental challenge.

Video games present a simplified yet realistic model for these challenges. They provide raw visual
and auditory input and require action sequences to manipulate game state. Players must infer
game conditions (e.g., health, position, objectives) from pixels alone and make decisions under

Stanford CS224R 2025 Final Report

uncertainty and adversarial pressure. These properties make games an incredible space for exploring
perception-driven decision-making.

This paper investigates whether an artificial agent can learn to map visual input to reward-maximizing
actions in a custom two-player game. The environment, built using pygame, features abilities with
spatial effects, resource management, and adversarial dynamics. The agent receives sequences of 12
RGB frames (200x150 resolution) and processes them using a convolutional neural network (CNN)
followed by a long short-term memory (LSTM) network. While training, three parallel CNN-LSTM
blocks are used, with two for two critics and one feeding into an actor network. The critic networks
estimate expected reward, while the actor network selects actions. The critic is a fully connected
network (FCN) producing a scalar value, while the actor is an FCN with two output heads: one for
discrete action selection and another for continuous positional targeting.

2 Related Work

Early work in deep reinforcement learning (RL) has demonstrated that agents can learn to act from
raw visual input. Mnih et al.| (2013) introduced a method where agents use stacks of four frames
as input, enabling them to capture temporal dynamics such as motion and momentum. This frame-
stacking approach works well in fully observable settings, but is less effective in partially observable
environments like the one in this paper, since agents lack access to opponents’ hidden states or internal
decisions. As a result, the agents rely on recurrent architectures to capture temporal dependencies.

In contrast, Lange et al.|(2012) focused on learning latent representations of raw pixel data through
convolutional encoders, providing a compressed feature space for policy learning. This approach
improves both sample efficiency and generalization while simplifying downstream policy models.
Inspired by this, I used a similar architecture to encode the visual state into a latent space before
action selection.

Another influential example comes from [Lample and Chaplot (2018), who trained an agent to play
DOOM using a CNN-LSTM pipeline. Here, convolutional layers extract spatial features from raw
frames, while the LSTM maintains a temporal hidden state. While effective in capturing dynamics
in a single-agent setting, this architecture lacks the complexity needed in adversarial environments.
Without opponent modeling or self-play, the agents struggle to generalize beyond fixed, predictable
opponents. It is worth noting that DOOM itself has a fair amount of stochasticity. Even so, the
environments are fairly consistent through different playthroughs.

To address this limitation, multiple works (Dwibedi and Vemulal (2020), Bansal et al.|(2018)), OpenAl
et al.| (2019)) incorporate self-play as a means of generating a curriculum and promoting robustness.
In particular, |(OpenAl et al.| (2019) introduced using a pool of past policies to avoid overfitting
and instability when training. Self-play introduces stochasticity and ensures continuous adaptation,
making it well-suited for multi-agent environments.

For the underlying RL algorithm, this work builds off the Soft Actor-Critic (SAC) framework
introduced by [Haarnoja et al.[|(2019). SAC combines off-policy learning with entropy regularization
to encourage exploration and stabilize updates. Its replay buffer and off-policy formulation make
it effective in symmetric, self-play settings where the enemy’s policy is updated with the player’s
policy. Further extensions like Kim et al.|(2020) adapt SAC to vision-based tasks by incorporating
convolutional encoders that map raw image input into latent states. These models do away with
traditional Q-learning in favor of Actor-Critic methods, offering better stability in continuous or
partially observable domains.

These prior efforts inform the design choices in this paper. By combining convolutional encoders,
recurrent networks, self-play, and the SAC algorithm, I aim to demonstrate that an agent can learn
capable strategies in visually rich, adversarial, two-player settings.

3 Methods

To support my agent’s learning, I developed a custom two-player video game and paired it with a
deep learning system built around CNN-LSTM modules for state representation and Actor-Critic
networks for decision-making and value estimation.

3.1 Game Environment

The environment is a two-player MOBA-inspired game developed using the pygame library, drawing
design elements from titles like League of Legends and Dota 2. Core mechanics of the game include
movement, ability usage, and resource management. Each player can perform one of three abilities.
The player can fire a projectile ("Q"), plac a damage zone ("W"), and use a shield ("E"). These
abilities have varying cooldowns and effects, resulting in the ability for strategic diversity.

The mouse position is used for directional input, introducing spatial reasoning challenges. Addition-
ally, To reduce computational demands for the learning agent, I increased sprite sizes and downscaled
the visual resolution from 800 x 600 to 200 x 150. Health and stamina bars are rendered for both
players on separate screens. Figure[Ia]shows an example screenshot of agents playing using random
policies.

3.1.1 CNN-LSTM Architecture

Visual input is processed through a convolutional neural network followed by a long short-term
memory (LSTM) network. The CNN extracts spatial features, and the LSTM captures temporal
dependencies across frames, which is important due to the partial observability of internal states like
cooldowns.

The CNN processes a 12-frame sequence of 200 x 150 x 3 RGB images using three convolutional
layers.

* Convl: 16 filters, kernel size 3, stride 2, padding 1
* Conv2: 32 filters, kernel size 3, stride 2, padding 1
» Conv3: 32 filters, kernel size 3, stride 2, padding 1
Each convolutional layer is followed by a ReLLU activation and a 2 x 2 max pooling layer. The

final output is flattened and projected to a 64-dimensional feature vector. Figure [Ib]shows a sample
reduced-resolution input.

173.4/200

83.3/100

(a) Example image of toy game environment. (b) Example input to CNN.

This feature vector is passed into an LSTM with a hidden size of 128 for sufficient ability to fit the
data. The LSTM maintains a temporal context and hidden state, enabling the agent to reason about
sequential dependencies in the environment.

The rationale for selecting a CNN-LSTM setup for translating the raw input into a latent feature space
lies in being able to process visual input with placing high emphasis on locality, as well as being able
to reason about the hidden state of the game. The inspiration for using this architecture comes from
Lample and Chaplot| (2018)) where they also used a CNN-LSTM.

3.1.2 Actor and Critic Networks

The actor and critic networks each use independent CNN-LSTM stacks to prevent shared-feature
conflicts and to allow separate optimization dynamics. Sharing parameters would complicate credit
assignment and update timing, as each network is trained for different objectives. The critic may

steer the CNN-LSTM towards features that assist with value estimation and the actor may steer the
CNN-LSTM towards features that allow for improved policies. Both networks use their respective
LSTM outputs as input for downstream modules.

The actor outputs an embedding vector, which is passed through an embedding layer to output a
5-action logits vector obtained via cosine similarity between the learned action embeddings and a
4-dimensional embedding per action. Additionally, the actor outputs mean and standard deviation
parameters for a Gaussian distribution over 2-dimensional spatial coordinates. Originally, the means
and standard deviations were determined with a "means" head and "standard deviations" head, though
the x and y coordinates were extremely coordinated, resulting in separating the mean and standard
deviation outputs into 4 heads.

Actions are sampled via softmax (for discrete decisions) and Gaussian sampling (for continuous
positions), introducing stochasticity to encourage exploration. Because of this inherent stochasticity
due to the entropy, the agent would explore the state space with this stochastic policy. Fully connected
layers are used for all heads of the actor.

The critic produces a scalar Q-value by passing its CNN-LSTM output through three fully connected
layers of size 134, 128, and 1, with ReLU activations in between.

3.2 Training Methods

3.2.1 Frame Skipping and Temporal Sequences

To reduce computational load, the agent chooses an action every 6 frames (200 ms at 30 FPS),
following a frame skip strategy inspired by prior works |[Mnih et al.[(2013)); [Lample and Chaplot
(2018)); |OpenAl et al| (2019). Though each of the aforementioned papers used a frame skip of
4, I believe that a frame skip of 6 is sufficient enough to allow the agent to adequately perform.
Additionally, the average reaction time of a human is around 200 milliseconds, meaning that with the
game running at 30 frames-per-second, 6 frames per action results in an action every 5th of a second,
mimicing the reaction speed of an average human. Each training sample spans 12 consecutive frames,
helping the model learn temporal credit assignment. These overlapping sequences ensure continuity
across samples, though the inclusion of a prior action can affect the ability to properly assign credit.

3.2.2 Soft Actor-Critic Optimization

I used the Soft Actor-Critic (SAC) algorithm [Haarnoja et al.|(2019), which optimizes an entropy-
regularized objective using off-policy updates and a replay buffer. This is well-suited for self-play,
where the opponent may change over time, since [am able to maintain a replay buffer of states
thatplayer and the enemy may see. This allows for the policy to train on transitions that the enemy
experiences as well.

To enable differentiable learning over discrete actions, I embed actions into a continuous space
similar to token embeddings in NLP. This design allows gradient flow through the softmax selection
mechanism, as otherwise, I would have to manipulate my gradient backpropagations, potentially
using Gumbel-softmax to approximate gradients.

The actor loss is defined as

Lactor = Egop [Egmr [—Qo(s,a) + - H(w(:]s))]] (M

Where Qq(s, a) is the critic’s estimate and H (7 (+|s)) is the entropy of the policy. The states s are
selected from a replay buffer D and the actions a are selected through querying the policy 7. The
temperature « is tuned automatically using the following equation:

£a = ESND [—Oé . H(?T(S)) - Htarget] (2)

« assists with matching the entropy of the policy with the target entropy. I chose to us e separate
temperatures for the discrete and continuous action components since each component functions
differently and has its own entropy. I used a target entropy of —5 for the discrete component since
it is common to set the target entropy equal to the negative of the number of discrete actions. I had

trouble with determining a proper target entropy for my continuous component and ended up with a
target entropy of 0, since my entropy continuously blew up when training.

I chose to use two critics trained using a standard Bellman backup to reduce the chance of overfitting
and departing from true values.

1
Leritic = i Z(Qg (5,a) —y)* 3)
y=r-+ ’Y(l - d) min(Qtarget,l(Slv al)7 Qtarget,Z(Sla a/)) (4)

r represents the reward, d is a done flag, and ~y is the discount factor. The critic loss is determined
with a mean squared error loss between the critic’s Q-value estimates and the expected return from
using the Bellman backup and target critic estimates. Each critic is updated using their specific
Q-value estimates and the minimum of the targed critic Q-values is taken to be conservative.

The target critics’ parameters are updated using Polyak averaging. Each target critic is updated with
the parameters of its corresponding critic.

O«7-0+(1—7)-0 5)

Iused 7 = 0.005 and Adam for optimization, with a learning rate of 1 x 103 for the CNN-LSTM
modules and the critics and a learning rate of 1 x 10~ for the actor.

3.2.3 Replay Buffer

The replay buffer stores 50,000 transitions due to memory constraints. This capacity captures
approximately 300 full game rollouts and provides sufficient diversity for effective off-policy training.
Each episode runs for 1080 environment time steps. Since an action is taken every 6 frames, the
replay buffer is able to store 300 full game rollouts with maximum episode length.

3.2.4 Self-Play Curriculum

I structured self-play through updating the enemy at an infrequent number of timesteps. I originally
chose 100,000 time steps, but it proved to be too few, as the player itself was having difficulty
learning the game. Even so, my methodology is such that only the player trains with both player and
enemy transitions for a set number of steps with a frozen enemy policy. The enemy policy is then
updated and then the player can continue training. This method of self-play is similar to the self-play
utilized by OpenAl et al.|(2019), though with a single past policy rather than a league of past policies.
Nevertheless, this method of freezing the enemy policy ensures gradual progression and mitigates
training instabilities.

3.3 Training Setup

Training occurs in real time, with the critic updated every action step using a batch size of 256. The
actor is updated every other step that the critic is updated to reduce the chance for instabilities in
training. The batches are shared between the actor and critic when updating, and training starts when
I collect 10 times the batch size in the replay buffer to reduce correlation within batches. I used
40,000 timesteps of pretraining for the critic to reduce early instability in value estimation due to a
rapidly changing policy.

4 Results and Discussion

Due to the complexity of both the model architecture and the game environment, training proved
to be extremely challenging due to instabilities lurking at every corner. When first training, one
particularly puzzling behavior emerged consistently during evaluation. Both agents would often travel
to a corner of the map and engage in combat there. This was unexpected, as the environment only
penalized leaving the center—not incentivizing the corners in any way. Figure 2| shows an example
of this behavior. Initially, I suspected that the issue might stem from vanishing gradients or a flawed
coordinate mapping between the network outputs and the game’s pixel space. However, this theory

was contradicted by the agent’s consistent ability to place both movement targets and damage zones
at matching positions, with the chosen corner varying across different episodes. I later determined
that in my implementation, I set the policy of the player and enemy to be the same, sharing references
rather than values, meaning that policy updates to the player also affected the policy of the enemy
when the enemy’s policy was supposed to be frozen. Even so, an additional surprising outcome was
that the agent stopped using its projectile ability altogether, which makes sense since projectiles
spawned just outside the hitboxes of both the player and the enemy, meaning that the return of casting
the ability was 0.

100/100

Figure 2: Both agents fighting in the bottom corner.

Due to the inherent complexity of the game, I progressively reduced the complexity of the action
space to simplify training and gain more control over the agent’s learning dynamics. Eventually, the
player was only able to fire projectiles and the enemy agent was made entirely passive. Furthermore,
I enabled full stamina to prevent stamina limitations from hindering learning. These changes
significantly reduced the dimensionality of both the state and action spaces. Despite this enormous
simplification, the setup still fulfilled the project’s core goal, as it demonstrates that a visual input
pipeline using CNN-LSTM architecture, coupled with Actor-Critic reinforcement learning and a
self-play curriculum, can yield an effective policy.

4.1 Quantitative Evaluation

Under the restricted training setup, the trained agent significantly outperformed a randomly acting
policy. In head-to-head evaluations, the trained policy consistently defeated the opponent in a matter
of seconds, while the random agent was unable to secure a kill even after a full minute. @ summarizes
these results. The trained agent achieved an average return of 295 across 10 games, compared to only
44 for the random policy, meaning that the player was able to use the visual input to focus projectile
shots towards the enemy.

Policy | Average Returns | Time to Kill (s)
Random 44 12
Trained 295 N/A
Table 1: Average returns and time to kill for random and trained policies.

Figure 3] and Figure] show the actor and critic losses, respectively. Interestingly, while the actor
loss steadily decreases over time, the critic loss increases, meaning that the critic is struggling to
provide stable Q-value estimates. This instability can introduce high variance into the policy gradient

updates, making training more erratic. Given that the actor and critic are mutually dependent, these
instabilities can compound over time. Nevertheless, despite these large loss values, the agent was still
able to perform remarkably well in practice.

It is important to note that decreasing actor losses are generally a good sign as oftentimes it shows that
the agent is becoming more confident in the actions that it takes, as it tries to maximize entropy while
simultaneously maximizing Q-values. Additionally, the increasing critic losses are not necessarily a
terrible outcome, since with a large replay buffer that potentially consists of subpar trajectories, the
critic may not be able to accurately predict the outcomes since it has become more overfitted to the
optimal policy. Lastly, the larger Q-values predicted by the critic directly affect the actor loss as seen
in (T).

—50

—100 A

Loss

—150 A

—200 A

T T T T T T T T T
40000 45000 50000 55000 60000 65000 70000 75000 80000
Timestep

Figure 3: Actor loss across timesteps.

The returns over time, shown in Figure[6] quantitatively highlight the agent’s effectiveness. In this
setup, agents have 200 health and regenerate at a rate of roughly 1 HP per second. An additional
100-point reward is granted for winning a game. Given a game length of about 12 seconds, the
theoretical reward ceiling is 310 (maximum damage plus victory bonus). The trained agent often
reaches this limit, indicating that it deals near-maximal damage in minimal time, even while actor and
critic losses remain high. This unexpected performance suggests that either surprisingly competent
behavior can emerge from unstable training signals or that the policy fails to adjust once it reaches a
saturation point of actor and critic losses.

Despite the agent’s strong empirical performance, I remain uncertain how it achieves such results in
the face of noisy and poorly converged Actor-Critic losses. It’s possible that some emergent behavior
or implicit regularization is helping the agent settle into high-reward strategies, even if those strategies
aren’t grounded in well-calibrated value estimates.

4.2 Qualitative Analysis

The ramifications of my research are minimal, as I have been unable to replicate these results with
random seeds and it seems to be that the agent stumbled into the proper policy by sheer coincidence.
Furthermore, the agent managed to break aspects of the game that I had built, allowing it to fire many
more projectiles than initially thought possible. It was because of being able to shoot more projectiles
that the agent was able to quickly dispatch the opponent. Figure ?? shows this incredible policy in
action.

400 A

300

Loss

200 4

100

T T T T T T T
20000 30000 40000 50000 60000 70000 80000
Timestep

Figure 4: Critic loss across timesteps.

Figure 5: Returns over timesteps.

Once I managed to limit the ability for the agent to spam projectiles, I was unable to train a policy
that performed as similarly. Even so, I am quite surprised that I was able to train a policy that used
visual input to control the actions, specifically projectile positioning, of this agent. I was having
extreme difficulty with training my agent and was incredibly overjoyed to find a policy that at least
killed the agent within the maximum episode length.

5 Conclusion

This work demonstrates potential viability of integrating multiple neural network architectures,
specifically convolutional neural networks, long short-term memory networks, and Actor-Critic
methods, in training an agent to succeed in maximizing returns. Although my final policy operates
within a reduced state and action space, the environment still provides sufficient complexity to gauge
the effectivity of the policy, and serves as a rich environment for an agent to capture key aspects of
spatial and temporal reasoning.

The results underscore challenges inherent in coordinating multiple neural networks. Training
instabilities were an incredibly major obstacle, likely due to the fragile stabilities of the interconnected
networks with shifting objectives. Nevertheless, even with these challenges, the agent was able to
learn a policy that consistently maximized returns within the specified time horizon.

Several directions remain for improving both stability and agent performance, as well as baselines
for comparison. I would like to increase the complexity of the game through progressively adding

200/200
@ W [E

Figure 6: Many projectiles fired in a short period of time.

more actions and allowing the enemy to play. Additionally, I would like to update the enemy policy
infrequently to encourage the player to discover more intricate strategies. The observed discrepancy
between the actor and critic losses and the agent’s in-game performance raises the suspicion that the
simple environment allows high returns to be achieved despite "suboptimal” performance.

Future work would aim to establish an alternative baseline to random policies. Training the CNN-
LSTM block and actor and critics separately and surgically combining the networks might prove to
be a competent baseline for comparing the ability for an agent to learn with a pre-processed state and
without one. Nonetheless, I have really enjoyed undertaking this project and am excited to continue
advancing my understanding in this field.

6 Team Contributions

* Joshua Boisvert created game and programmed Soft Actor-Critic method, as well as training
regime and wrote the report.

Changes from Proposal Instead of using the entire action space and training with self-play, I only
manage to train within a limited action space and with no self-play. Even so, I was able to train a
policy that consistently dispatched the enemy agent.

References

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. 2018. Emergent
Complexity via Multi-Agent Competition. arXiv:1710.03748 [cs.Al] https://arxiv.org/
abs/1710.03748

Debidatta Dwibedi and Anirudh Vemula. 2020. Playing Games with Deep Reinforcement Learning.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. 2019. Soft Actor-Critic
Algorithms and Applications. arXiv:1812.05905 [cs.LG] https://arxiv.org/abs/1812|
05905

Taewon Kim, Yeseong Park, Youngbin Park, and Il Hong Suh. 2020. Acceleration of Actor-Critic
Deep Reinforcement Learning for Visual Grasping in Clutter by State Representation Learning
Based on Disentanglement of a Raw Input Image. arXiv:2002.11903 [cs.LG] https://arxiv,
org/abs/2002.11903

https://arxiv.org/abs/1710.03748
https://arxiv.org/abs/1710.03748
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2002.11903
https://arxiv.org/abs/2002.11903

Guillaume Lample and Devendra Singh Chaplot. 2018. Playing FPS Games with Deep Reinforcement
Learning. arXiv:1609.05521 [cs.Al] https://arxiv.org/abs/1609.05521

Sascha Lange, Martin Riedmiller, and Arne Voigtlidnder. 2012. Autonomous reinforcement learning
on raw visual input data in a real world application. In The 2012 International Joint Conference on
Neural Networks (IJCNN). 1-8. https://doi.org/10.1109/IJCNN.2012.6252823

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. 2013. Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602 [cs.LG] https://arxiv.org/abs/1312.5602

OpenAl, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw De¢biak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal J6zefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement Learning.
arXiv:1912.06680 [cs.LG] https://arxiv.org/abs/1912.06680

A Additional Experiments

I did not have time to finish, but I started working on a separate training method in which I trained
the CNN-LSTM modules and the Critic and Actor modules simultaneously with losses for state
prediction for the CNN-LSTM modules and true states for the Critic and Actor modules. I was able
to reduce the losses for my Critics and CNN-LSTM significantly, but was unable to figure out entropy
struggles related to the Actor. My policy consistently chose positions that were in the corners due to
trying to maximize entropy.

10

https://arxiv.org/abs/1609.05521
https://doi.org/10.1109/IJCNN.2012.6252823
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1912.06680

	Introduction
	Related Work
	Methods
	Game Environment
	CNN-LSTM Architecture
	Actor and Critic Networks

	Training Methods
	Frame Skipping and Temporal Sequences
	Soft Actor-Critic Optimization
	Replay Buffer
	Self-Play Curriculum

	Training Setup

	Results and Discussion
	Quantitative Evaluation
	Qualitative Analysis

	Conclusion
	Team Contributions
	Additional Experiments

